Learning from Imbalanced Data Sets: A Comparison of Various Strategies
نویسنده
چکیده
Although the majority of concept-learning systems previously designed usually assume that their training sets are well-balanced, this assumption is not necessarily correct. Indeed, there exists many domains for which one class is represented by a large number of examples while the other is represented by only a few. The purpose of this paper is 1) to demonstrate experimentally that, at least in the case of connectionist systems, class imbalances hinder the performance of standard classifiers and 2) to compare the performance of several approaches previously proposed to deal with the problem.
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملA Review on Imbalanced Learning Methods
Nowadays learning from imbalanced data sets are a relatively a very critical task for many data mining applications such as fraud detection, anomaly detection, medical diagnosis, information retrieval systems. The imbalanced learning problem is nothing but unequal distribution of data between the classes where one class contains more and more samples while another contains very little. Because ...
متن کاملA Novel Class Imbalance Learning Method using Subset Filtering
In many real-world applications, the problem of learning from imbalanced data (the imbalanced learningproblem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000